Contribution of the selectivity filter to inactivation in potassium channels.
نویسندگان
چکیده
Voltage-gated K+ channels exhibit a slow inactivation process, which becomes an important influence on the rate of action potential repolarization during prolonged or repetitive depolarization. During slow inactivation, the outer mouth of the permeation pathway undergoes a conformational change. We report here that during the slow inactivation process, the channel progresses through at least three permeation states; from the initial open state that is highly selective for K+, the channel enters a state that is less permeable to K+ and more permeable to Na+, and then proceeds to a state that is non-conducting. Similar results were obtained in three different voltage-gated K+ channels: Kv2.1, a channel derived from Shaker (Shaker Delta A463C), and a chimeric channel derived from Kv2.1 and Kv1.3 that displays classical C-type inactivation. The change in selectivity displayed both voltage- and time-dependent properties of slow inactivation and was observed with K+ on either side of the channel. Elevation of internal [K+] inhibited Na+ conduction through the inactivating channel in a concentration-dependent manner. These results indicate that the change in selectivity filter function is an integral part of the slow inactivation mechanism, and argue against the hypothesis that the inactivation gate is independent from the selectivity filter. Thus, these data suggest that the selectivity filter is itself the inactivation gate.
منابع مشابه
Mechanism for selectivity-inactivation coupling in KcsA potassium channels.
Structures of the prokaryotic K(+) channel, KcsA, highlight the role of the selectivity filter carbonyls from the GYG signature sequence in determining a highly selective pore, but channels displaying this sequence vary widely in their cation selectivity. Furthermore, variable selectivity can be found within the same channel during a process called C-type inactivation. We investigated the mecha...
متن کاملA multipoint hydrogen-bond network underlying KcsA C-type inactivation.
In the prokaryotic potassium channel KcsA activation gating at the inner bundle gate is followed by C-type inactivation at the selectivity filter. Entry into the C-type inactivated state has been directly linked to the strength of the H-bond interaction between residues Glu-71 and Asp-80 behind the filter, and is allosterically triggered by the rearrangement of the inner bundle gate. Here, we s...
متن کاملVoltage Sensor Inactivation in Potassium Channels
In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and th...
متن کاملReciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation
Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show th...
متن کاملClosed state-coupled C-type inactivation in BK channels.
Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 76 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1999